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1. INTRODUCTION 

In recent years, an astonishing variety of pulse techniques has been developed with the aim of 

enhancing the information content or the sensitivity of NMR spectra in both solution and solid 
phases.(‘-3g) For the design and analysis of new techniques two approaches have been pursued in the 
field of “spin engineering”. Many of the original concepts were based on simplified classica or 
semiclassical vector models which have inherently severe limitations for describing more 
sophisticated techniques; for example, those involving multiple quantum coherence. On the other 
hand, for a full analysis of arbitrarily complex pulse experiments applied to large spin systems, the 
heavy machinery of density operator theory has been put into action, often at the expense of physical 
intuition. 
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We present here an approach which follows a middle course. It is founded on density operator 
theory but retains the intuitive concepts of the classical or semiclassical vector models. The formalism 
systematically uses product operators to represent the state of the spin system. 
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In Section 2 we discuss the relation of product operators to vector models and density operator 
theory. In the following three sections, we develop the nomenclature of product operators, the 
relationship between operators and vector pictures, and the rules for the evolution under shifts, 
couplings and pulses. Combinations of evolution intervals and rf pulses are treated in Section 6 in 
terms of “composite rotations”. Magnetically equivalent nuclei are discussed in Section 7. The scalar 
coupling to nuclei with spin S > l/2 and the effects of quadrupolar couplings in anisotropic phase are 
the subject of Section 8. In Section 9, multiple-quantum coherence is discussed in terms of shift oper- 
ators and of single-spin operators. Guidelines are indicated in Section 10 for deriving the observable 
magnetization, in particular the amplitudes and phases of multiplets. Selective pulses are briefly 
mentioned in Section 11. Finally, we treat in Sections 12-15 some examples involving coherence 
transfer such as two-dimensional correlation spectroscopy, relayed magnetization transfer, multiple 
quantum filters, 2D exchange spectroscopy, and systems with non-uniform spin temperature in the 
context of flip angle effects. 

2. APPROACHES FOR THE ANALYSIS OF PULSE EXPERIMENTS 

2.1. Classical Vector Models 

In systems containing only isolated nuclei without spin-spin coupling (and without quadrupolar 
coupling), the magnetization can be described in terms of Bloch equations as a classical vector moving 
in three-dimensional space. This approach is satisfactory to describe many basic experiments of 
Fourier spectroscopy,“) including spin-echoes,“) Tr measurements,‘3) “DANTE” sequences,‘g5’0) 
composite pulses,‘27,28’ measurement of slow chemical exchange(22~38’ and spin imaging.@‘) 

2.2. Semiclassical Vector Models 

In multi-level systems, it is possible to assign a vector to each individual transition. The effects of 
selective pulses and precession can still be understood on classical grounds. However, non-classical 
extensions are necessary to describe the transfer of coherence from one transition to another.‘@ In this 
context, the substitution of non-selective pulses by pulse cascades has proved to be convenient.‘40’ 
Semiclassical vector models, though successful for many experiments, including heteronuclear 2D 
spectroscopyo4-16) and other polarization transfer experiments,‘17-19) must be handled with care. In 
particular vector models do not adequately reflect the interdependence of z-components belonging to 
single transitions that share common energy levels. 

2.3. Density Operator Approach 

In contrast to semiclassical treatments, the quantum mechanical approach does not deal directly 
with observable magnetization, but rather with the state of the spin system, irrespective of the 
observable that will be finally detected. (41-43) The state of the system is expressed either by the wave 
function $(t) or by the density operator a(t). 

If relaxation is disregarded, the time evolution of the density operator is described by the 
Liouville-von Neumann equation 

d(t) = -i[2P(t),a(t)]. (1) 

The Hamiltonian includes chemical shift terms, coupling terms and interactions with time-dependent 
external radio-frequency fields. It can be made time-independent within a finite time segment by 
selecting a suitable rotating frame. The time evolution can then be expressed by a sequence of unitary 
transformations of the type: 

a(t+z, +z,) = exp ( -i&f2z2} exp { -iXrr,}a(t)exp { +iZ,r,} exp (+i3f2T2} (2) 

with the propagators exp { - iXo,z,}. This equation applies to any sequence of intervals rk with 
constant external fields, or alternatively to zk intervals where a time-independent average Hamiltonian 
$?k can be defined. 



Product operator formalism for the description of NMR pulse experiments 165 

Having computed the time evolution of the density operator a(t), the observable magnetization 
components can be evaluated from the trace relations: 

M,(t) = J/lryh Tr {F,a(t)}; M,(t) = J)ryh Tr {F,a(t)} (3) 

with the number of nuclei per unit volume JV and the observable operators 

F, = CL; Fy = CIky (4) 
k k 

which are evaluated by summation over all spins k of one particular kind (for example protons, 
carbon-13, etc.). We shall discuss the implications of these trace relations in Section 10, with particular 
emphasis on the behaviour of individual multiplet components in coupled spin systems. 

The evaluation of expectation values according to eqns. (3) takes place in the so-called “Schrddinger 
representation” where the state of the system represented by the density operator o(t) is time- 
dependent, while the observable operators are time-independent. Sometimes, it is more convenient to 
transfer the time dependence to the observable operator, e.g. F,, in the sense 

M,(t) = ~yhTr~F,(U(t)o(O)U-l(t))} 

= JyryhTr {(U-‘(t)F,U(t))a(O)j 

= .Nyh Tr {F,(t)o(O)). (5) 

Attributing the time-dependence to the operators amounts to using the so-called “Heisenberg 
representation”, (44) where in analogy to eqn. [Z] the evolution is described by 

F,(t+z, +tz) = exp (i&‘iz,}exp (itizr,}F,(t)exp { -iS2r,} exp { -Miz,}. (6) 

Note the opposite order of the propagators. The Heisenberg representation, though it provides less 
intuitive insight, is of advantage when the evolution should be discussed for various initial conditions 
a(0). As long as relaxation is not considered both representations are only trivially different. However, 
for proper consideration of relaxation and exchange processes it is necessary to work in the 
Schrodinger representation. In the following, we use only the “natural” Schrodinger representation 
although the formalism can equally well be applied to the Heisenberg representation. 

When eqn. (2) is expressed in terms of explicit matrices the unitary transformations amount to 
multiplications of matrices with dimension 2N x 2N for N spins with I = l/2. In the eigenbasis of the 
unperturbed Hamiltonian, the elements of the density matrix have a simple physical meaning: a 
diagonal element eii(t) represents the population Pi(t) of energy level i, while an off-diagonal element 
cij represents coherence belonging to the transition (ij). Free precession can be readily described in 
the eigenbase, since the propagator exp { -MT) is represented by a diagonal matrix, but the matrix 
elements of pulse operators cause complicated mixing of the matrix elements of ~~(t).(~s~) Explicit 
matrix representations tend to be cumbersome fo? systems with more than a few coupled spins. 

2.4. Product Operator Formalism 

For the evaluation of eqns. (2)-(6) the density operator c may be expressed as a linear combination 
of base operators B~:t4’) 

o(t) = 1 h,(r)& (7) 

The complexity of practical calculations greatly depends on the choice of the set {B,}. The use of 
irreducible tensor operators as base operators has been proposed elsewhere.(45r46) Single transition 
operators (47*48) which are useful to describe selective excitation, can also be used as base operators, 
but in the’case of non-selective excitation retain much of the complexity of explicit matrix calculations. 

To provide at the same time physical insight and computational convenience, we propose to express 
the density operator systematically in terms of product operators: 

B, = 2’9-1) fi (Ik”)(l.L 
k-1 
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where N = total number of I = l/2 nuclei in the spin system, k = index of nucleus, v = x, y or 
z,*q = number of single-spin operators in the product, ask = 1 for q nuclei and asl, = 0 for the N-q 
remaining nuclei. 

Product operators for spin l/2 nuclei are orthogonal with respect to formation of the trace, however 
they are not normalized, i.e. 

Tr { B,B,} = 6,,,2N-2. (9) 

The complete base set {B,} for a system with N spins l/2 consists of 4N product operators B,. 

As an example, we list the complete set of 16 product operators B, fora two-spin system: 

q=o $E (E = unity operator) 

q=l Ilx, II,> fir, I,,, I,,, I,, 

q=2 21,,1,,,2I,,I,,,21,,I,,, 

2~1,1,.x, 2IlJ2,* 211,Im 

21,*1,,,2I,,I,,,2I,,I,,. 

Any arbitrary density operator can be expressed as a linear combination of such a set of base 
operators. At first sight, the bewildering array of terms seems discouraging. Yet this choice greatly 
simplifies calculations of pulse experiments applied to weakly-coupled systems, because the destiny of 
individual operator terms can be followed throughout the experiment and can be associated with a 
clear physical meaning. 

The effects of free precession and of rf pulses are described by a sequence of transformations of the 
type : 

exp I- WW,exp 044) = c Mr, #Wt. (10) 

where $B, takes the form (Q,z)I,, for chemical shift precession, (K.I~~T)~IJ~~ for the evolution under 
weak scalar coupling between two spins with I = l/2, and fir,, for an rf pulse applied to nucleus k with 
rotation angle /3 and rotation axis v. 

3. NOMENCLATURE OF PRODUCT OPERATORS 

The nomenclature proposed in this section is chosen in view of the relevance of product operators 
for the observed spectrum. We assume a high resolution Hamiltonian where the individual spin 
multiplets are resolved. 

In the context of an N-spin system, we distinguish one-spin, two-spin and generally q-spin product 
operators. One-spin operators are associated with entire spin multiplets. I,, represents z-magnetization 
with equal polarization across all transitions of spin k. The transverse operators I,, and I,, are 
representative of the spin k multiplet with all multiplet components in-phase along the x- or y-axes of 
the rotating frame. This suggests the following nomenclature: 

I kr : longitudinal magnetization of spin k, 

I,,: in-phase x-magnetization of spin k, 

I,,,: in-phase y-magnetization of spin k. 

The two-spin product operators can be classified as follows: 

2I kxI&: antiphase x-magnetization of spin k, or more specifically, x-magnetization of spin k 

antiphase with respect to spin e, 

21k,1C, : antiphase y-magnetization of spin k, or more specifically y-magnetization of spin k 

antiphase with respect to spin C, 

2I,,I[,, 2I,,I,, 21k,Ip, and 21k,IL,: two-spin coherence of spins k and /, 

21k,I&: longitudinal two-spin order of spins k and 8. 
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Antiphase magnetization represents multiplets with individual components that have opposite phases. 
For example, 2Z,,Z~~ corresponds to a k-spin multiplet with magnetization components along the +x 
or --x axis of the rotating frame, depending on the polarization of spin /. An antiphase multiplet has 
zero integrated intensity. Two-spin coherence represents a superposition of zero and double quantum 
coherence, as will be discussed in Section 9. “Longitudinal spin order” refers to spin-correlated 
population of energy levels without net polarization and without observable magnetization. 

In larger spin systems of I = l/2 nuclei, three-spin product operators may appear in the following 
forms: 

4Zr,ZLZZ,,: x-magnetization of spin k, in antiphase with respect to the spins 8 and m, 

4Zk,IeXZ,,: two-spin coherence of spins k and e, in antiphase with respect to spin m, 

41kxICx~mx: three-spin coherence, 

4zkzI,zIm : longitudinal three-spin order. 

Antiphase two-spin coherence comprises zero quantum and double quantum coherence with multiplet 
components that have opposite phases depending on the polarization I,, of the “passive” spin m. 
Three-spin coherence consists of a superposition of single quantum coherence (combination lines) and 
of triple quantum coherence (see Section 9). 

We should note that the expression “magnetization” is used only for observable single quantum 
transitions. “Coherence”, on the other hand, can refer either to transverse single quantum magnetiza- 
tion or to multiple quantum coherence. 

4. PICTORIAL REPRESENTATIONS OF PRODUCT OPERATORS 

The product operators discussed above can readily be related to semiclassical vector models. In a 
system with two spins k and /, the in-phase magnetization I,_ may be represented as shown in Fig. 1 by 
parallel vectors along the positive x-axis in the rotating frame, or alternatively by parallel arrows in 
the energy level diagram. (We use wavy lines to distinguish coherence from a flow of population.) 

* 'kx'l 

FIG. 1. Graphical representations of product operators representing single-quantum magnetization and longi- 
tudinal magnetization in a system of two coupled nuclei with I = l/2. The oscillating x and y magnetization 
components are represented by wavy lines in the energy-level diagram (dashed lines for y components) or by the 
customary vectors in the xy-plane of the rotating frame. Populations are represented symbolically by open 
symbols for states that are depleted, filled symbols for states that are more populated than in the demagnetized 

saturated state. 
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: 

2Jx &+ 2I& +-WV*-- -c i_ 21kx1,x- 2&1,, 

FIG. 2. Graphical representation of the linear combinations of product operators that represent pure zero- and 
double-quantum coherence in a two-spin system with I = l/2. The wavy lines are solid or dashed depending on the 
phase of the coherence. Simple products never represent pure p-quantum coherence, for example, 21J,, amounts 

to a superposition of two diagrams. 

Negative components are represented by reversing the sign of the arrows in either picture, while 
y-components can be indicated in the energy level diagram by dashed wavy arrows (I,,, in Fig. 1). 
Antiphase single quantum magnetization is represented by antiparallel vectors (21Jt, in Fig. 1). 

Longitudinal magnetization and spin-spin order is indicated by filled and open symbols for positive 
and negative deviations from the equally populated, demagnetized state (Ikr, Iki + Icr, 21k,Ie1 in Fig. 1). 

In principle, the population differences across individual transitions can also be represented by 
z-magnetization components in vector diagrams. Although this approach is valuable in discussing 
polarization transfer, (16-19) it must be used with great care as it does not reflect the fact that several 

transitions may share common energy levels. 
Figure 2 shows how pure zero- and double quantum operators (see Section 9) may be represented 

graphically. Again, dashed wavy arrows are used to indicate y components. Although some authors 

I kx 

2 ',x1,x 

4 'kxllt ‘III, 

FIG. 3. Graphical representations of some product operators corresponding to single and double quantum 
coherence in a system of three coupled spins with I = l/2. The arrows indicate parallel and antiparallel coherence 

components. Note that each term represents an entire multiplet rather than an individual transition. 
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I kx 

4 'kx'lz ‘rnz 

kO’ 
m 

kO’ 
Lrn 

k0’ 
lrn 

I -J.ul- LLL 

FIG. 4. Schematic spectra obtained after Fourier transformation of the free induction decays induced by some 
typical product operators involving single quantum coherence of nucleus k in a system with three spins with I = 
l/2. In linear networks (Jt, = 0), magnetization of spin k antiphase with respect to spin m is not observable 
(bottom left). In systems with degenerate couplings (right column), the central transition vanishes if two com- 
ponents with opposite phase are superimposed. Linear combinations of product operators yield operators that 
correspond to single transitions. Thus the sum of all four stick spectra in the central column yields a single line on 

the right (see Section 11). 

have represented multiple quantum coherence by vectors,‘32*49) we prefer to restrict the use of vector 
models to observable magnetization. 

Figure 3 gives pictorial representations of a few typical product operators that may occur in three- 
spin systems : in-phase magnetization ZlrX, antiphase magnetization with respect to one or two 
couplings, (2ZkxZCz, 4Zk,Zc,Z,,), pure in-phase double quantum coherence involving two of the three 
spins, (2zkxzCx - 2zkyzl,), and pure double quantum coherence in antiphase with respect to the third 
(passive) spin, 2(2ZhZ& - 2ZkYZlY)Zm, 

These examples demonstrate that the product operators are easy to visualise and are closely related 
to semiclassical pictorial representations. There is also a direct relation between the appearance of the 
spectrum and the presence of observable product operators. Four examples are shown in Fig. 4 for 
three-spin systems with different coupling patterns. A more detailed discussion of the relationship 
between multiplet patterns and product operators is given in Section 10. 

5. EVOLUTION OF PRODUCT OPERATORS 

We restrict the discussion of the time evolution of product operators to weakly coupled spin 
systems, since strong coupling complicates the situation without providing more insight into the 
mechanism of pulse experiments. In most cases, the treatment of strongly coupled systems requires a 
numerical computer analysis (see for example Ref. SO). For weakly coupled systems, on the other hand, 
analytical calculations are straightforward. Throughout, we shall use a shorthand notation to express 
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evolution caused by the Hamiltonian. Equation (2) will be expressed in the form 

(11) 

where the algebraic signs and the chronological sequence of the transformations correspond to the 
arguments of the time-ordered exponential operators on the right hand side of eqn. (2). (The imaginary 
unit i is dropped in this notation.) 

First consider 
Hamiltonian 

the evolution of the density operator under the unperturbed weak coupling 

2 = c %I,, +c c 2nJkcIkzIrz 
k kit 

= CRk(Ik,)+CCxJke(2zk,l~,). 
k k<L 

(12) 

Note that the Hamiltonian is written in terms of the product operators B, defined in eqn. (8) by a 
trivial rearrangement of the factor 2. The shift frequency of nucleus kin the rotating frame is defined by 
Qk = wok - wrf, with the Larmor frequency aok = - yk( 1 - a,)B, and the rf frequency wrf. In hetero- 
nuclear systems several different rf frequencies and rotating frames may be used. 

We consistently define positive rotations (frequencies and angles) in the right-handed sense 
(clockwise). A positive rotation about the z-axis leads from x+y+ -x+ -y. For positive gyro- 
magnetic ratio, Larmor frequencies wok are negative if B, is oriented along the positive z-axis. 
Magnetic field and rotation frequency vectors are antiparallel both in the laboratory as well as in the 
rotating frame as shown in Fig. 5. 

Since all terms in eqn. (12) commute, the evolution caused by the individual terms can be computed 
separately in arbitrary order: 

k k<l 

X fl exP (i~Jkdkz~&) n exP (inkrlkz) 
kc! k 

(134 

FIG. 5. Magnetic field vector ABk = (1 -r~~)B,+w& and precession frequency vector R, = cook -o,( in the 
rotating frame for a case where the carrier frequency lo& is placed above the resonance frequency ImOk( (for y > 0). 
The chemical shift precession frequency R, is in this case represented by a vector parallel to the positive z-axis. The 
resulting effective magnetic field vector BeII and effective precession frequency vector weII are indicated for an rf field 
B, applied along the negative x-axis. The corresponding rotation vector w1 = - yB, points then along the positive 

x-axis and induces a positive rotation, i.e. z+ -y--t -z-y. 
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or symbolically: 

fi,Tr,z Qr~*z a(t)-------t-.... ~J,,~~~I,~,, ~J,3521,,13, . . . ..o(t+T). W) 

One may speak of a “cascade of chemical shift terms” and a “cascade of coupling terms” in analogy to 
pulse cascades. c40) The transformations under the action of shifts, couplings and pulses will now be 
discussed separately. 

5.1. Chemical Shifts 

The effect of a shift frequency Q is described by 

I QkT~llZ tx __t I,, cos S2,7 + IkY sin 47 (14) 

IkY A IkY cos C&r - I,, sin R,r (15) 

These transformations are shown graphically in Fig. 6. 
For a product operator representing two-spin coherence, for example, we obtain the following 

chemical shift evolution: 

Clearly, K&71,, only affects Ikx, and nezIL, only affects IcX in this cascade. 
Chemical shift evolution always conserves the number q of operators Iku in each term B,. An 

SHIFT OR Z-PULSE X-PULSE Y-PULSE 

COUPLING 

FIG. 6. The effect of chemical shifts, on-resonance rf pulses, and positive scalar couplings on product operators. 
These figures are based on commutator relationships that are applicable to arbitrary spins I, 3 l/2 with a coupling 
partner with spin I, = l/2. They represent three-dimensional operator subspaces within which rotations take place 
in complete analogy to rotations in three-dimensional physical space. The sense of rotation is indicated for positive 

rotation angles. 
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operator with q1 transverse components (Zkx, ZkY) transforms into a linear combination of at most 241 
terms, while the longitudinal components I,, remain invariant. 

5.2. Spin-Spin Couplings 

For a coupling between two nuclei k and 8 within an arbitrary network of coupled spins I = l/2 we 
find the rules : 

I 
nJkr72IkzIcz 

k.x l ~~COS(KJ~7)+2zky~rrSin(7tJkc7) (17) 

Ik, 

nJkc72lkzlcz 
t Ik,,COS (nJu7) -2zk,I[z Sin (nJu7). (18) 

This corresponds to the conversion of in-phase magnetization into orthogonal antiphase magnetiza- 
tion. If we start out with antiphase magnetization, the evolution under the scalar coupling generates 
in-phase magnetization: 

2IkxIlz 
nJkC72IkzICr 

* 2ik,I& COS (7CJkc7) + Ik, Sin (7CJkc7) (19) 

2IkyICz 
nJkc72Ikrlcz 

) 21kyIfrCOS (71Jkt7)--kx Sin (7CJkd7). (20) 

These equations are restricted to nuclei with Zc = l/2, but include cases with ZI, > l/2. They can be 
derived by the procedure outlined by Slichter,‘42’ using the cyclic commutation relationships 

[2zkzzCz9 zky] = - i21kxzdz. 

The transformations in eqns. (17)-(20) are depicted schematically in Fig. 6. 

(21) 

5.3. Radio-Frequency Pulses 

First, we restrict the discussion to strong non-selective rf pulses with lwil = I@, 1 z- I&) =a jnJk& 
The effect of pulses with phase v = x or y and flip angle B is represented by the transformation: 

where the summation is carried out over all spins affected by the pulse (possibly restricted to either Z or 
S species in heteronuclear systems). In shorthand notation one may write in arbitrary order: 

o(t_)~~Jk...rT(t+). (23) 

The effect of an rf pulse can be considered separately for each single-spin operator ZkV in the product 
operators. 

For a rotation about the x-axis one obtains: 

BIkx 
zk, __+ zkz cos I- Iky sin fl (24) 

I 
filkx 

k’y - Zkycosfi+Zklsinfi, (25) 

and for a rotation about the y-axis: 

*BIIy 
kx Ikx cos /3 - I,, sin /I. (27) 

(26) 
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One should keep in mind that a positive rotation angle /3 indicates rotation in the right-handed 
(clockwise) sense, as illustrated in Fig. 6. This logical choice of the sense of rotation(51*s2) is opposite to 
a convention widely used in NMR. (42~53) By “x-pulse”, we understand a rotation about a vector o1 = 
- yB, aligned along the positive x-axis. Thus for nuclei with positive gyromagnetic ratio, the rffield is, 
in this case, actually aligned along the negative x-axis. In practice, it is of course the rotation vector o, 
which determines the outcome of the experiment. Thus, we consider it natural to indicate the direction 
of the rotation vector rather than the direction of the rf field. However, in the vast majority of NMR 
experiments, the actual sense of physical rotation of magnetization vectors cannot be determined and 
hence the choice of convention is rather academic. 

With rf phase shifts or pulse sandwiches (27*28) it is also possible to create the equivalent of 
z-pulses(54) and achieve the following transformations: 

I PI,* 
kx - I,, cos /3 + Ik, sin B (28) 

BL Ik, - IkY cos fi - I,, sin /I. (29) 

These transformations are analogous to the effect of chemical shifts shown in Fig. 6. 
As an example of a y-pulse, consider the effect on a two-spin operator representing antiphase 

magnetization: 

2IkxICz - - 2IkzICx. (30) 

This expresses the transfer of antiphase magnetization of nucleus k into antiphase magnetization of 
nucleus e, a process which is the key to many coherence transfer experiments. 

On the other hand, if an x-pulse is applied to the same antiphase magnetization: 

(31) 

one obtains a transfer into two-spin coherence, a phenomenon that is exploited in zero and double 
quantum spectroscopy. 

5.4. Pulses with Arbitrary Phase 

Pulses with arbitrary phase cp (defined as the displacement from the x-axis towards the y-axis) can 
be represented by the transformation 

a(t +) = exp -i/3T[I,,coscp+I,.sincp] 

= exp( -i~~~k,)exp(-i~~Ik,)exp( +ipT1kz)a(r_) 

xexp( --iv+)enp( +iP~L)exp( +ivFIkz). (33) 

Thus the effect of a pulse with phase. cp and flip angle fl on an arbitrary initial condition may be 
calculated in three separate steps (expressing the operators on the right-hand side of eqn. (33) in 
shorthand notation): 

-‘pCL /EL ‘PCL 

a@-) L L Ir a(t+). (34) 
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The first operation corresponds to a z-pulse with rotation angle --cp, the second to an x-pulse with flip 
angle /I, and the final step is a z-pulse with rotation angle rp. Equations (24)-(27) can thus be 

generalized for arbitrary phase rp: 

I BCIkX cos cp + IkY sin rp] 
kz * I,, cos /I + I,, sin p sin cp -I,, sin pcos cp (35) 

I BCIkx cos cp + I,, sin cp] 
kx * -I,, sin B sin cp + I,, (cos I!? sin2q + ~0s~~) + I,, sinzP/2 sin 2~ 

(36) 

I fi[‘k.x cos q + I,, sin cp] 
ky b I,, sin B cos cp -k I,, sin2P/2 sin 2q + I,,(cos j3 cos2q + sin2q). 

(37) 

In practice, one can achieve such transformations either by applying a single pulse shifted in phase 
through an angle cp, or alternatively by using pulse sandwiches.(54) 

5.5. Pulses with Tilted RF Fields 

The effects of tilted rf fields can be calculated in an analogous manner. For a pulse with flip angle p, 
arbitrary phase cp and tilt angle f3 away from the z-axis, the transformation may be written in five steps: 

-(PcIk, CIk, +bxzkx - 
a( k ) k (38) 

Note that on-resonance pulses correspond to 0 = n/2. In this manner we obtain general relations: 

I,,% Z,,[cos p sin28 + cos28] 

+ I,,. + sin /I sin cp sin 6 + sinZfi/2 cos rp sin 2e] 

+ I,,[ -sin B cos cp sin e + sin2/?/2 sin cp sin 2e] 

I,,% Ik,[sin2j?/2 sin 26 cos cp -sin IV sin cp sin e] 

+ I,,[cos @ (sin2q +cos2p cos28) +cos’rp sin’@] 

+ Ik,[sin2b/2 sin 2~ sin20 + sin p cos I31 

IkYJQ5 Ik,[sin2j?/2 sin 28 sin cp + sin B cos cp sin e] 

(39) 

(40) 

+ Ik,[sin2fi/2 sin 2~ sin28 -sin /3 cos e] 

+ I,,[cos /l (cos2 cp + sin2 cp cosze) + sin’ cp sin2B]. (41) 

These equations are useful to predict the effect of non-ideal pulses. Consider for example the effect of 
a tilted refocussing pulse on a state of pure double quantum coherence (see Section 9). The effective flip 

angle, defined by p = -ry,,/m and assumed identical for both nuclei, is set to /? = A. If the rf 
phase is set to cp = 0 for clarity, the following transformation is obtained: 
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The second term implies that even with an ideal llip angle B = II, the double quantum coherence is 
partly converted into antiphase single quantum magnetization. Artifacts resulting from such 
undesirable coherence transfer phenomena may be cancelled by appropriate phase-cycling tech- 
niques.(26’ 

6. COMPOSITE ROTATIONS 

It is often useful to treat certain groups of pulses and precession intervals as single units which have 
a simple overall effect. Typically, such units appear as symmetrical sandwiches. This approach has 
been used extensively to describe selective multiple-quantum excitation(55) and time-reversal experi- 
ments.“@ We shall restrict the discussion to a few cases relevant for weakly-coupled systems. 

(1) A simple example is a “composite z-pulse”,(54) mentioned in the previous section (eqns. (28) and 
(29)) which consists of the sequence (7$2_,&(7~/2)+~ and can be represented in shorthand: 

-- ;clx, Blpky +;cL 
a(t L a(t+). (43) 

Since 

exp 
( > 
-i? I,, 

2 
exp (+ $I,,) exp 

( > 
+ i 5 I,, = exp Wd, (44) 

the overall effect of the three pulses may be written in condensed form 

BCIkz 
a@-1 t dt+), (45) 

which amounts to a rotation about the z-axis through an angle #I. Such composite z-pulses can be used 
to simulate a continuously-variable phase shift of the rfcarrier.(54) 

(2) Some experiments require that the multiplet components evolve under the exclusive influence of 
the spin-spin coupling term. For this purpose an evolution period of length 27 is interrupted by a x 
pulse to refocus chemical shifts. The effect of such a r - (n), - 7 sequence on the density operator is a 
composite rotation which may be written in shorthand: 

u(t_) c nJk&IkrI&. ~nk71k, , HCIkx+ Cak71kz. bJkd721kzbz o(t+27+), (46) 

Because of the relationship 

eio,7r,, einlLX = ei% e -Gl,. (47) 

one may swap the second and third terms in eqn. (46) while changing the sign of the shift term. Thus 
the effect of shifts is cancelled, and, since the coupling and inversion terms commute, one obtains the 
equivalent transformation 

n c I,, c aJkc272Ik,I,, 
a( * a(t+27+). (48) 

A similar simplification is obtained for a n-pulse with arbitrary phase cp. Equation (48) shows that the 
n-pulse may be thought of as if it were applied at the beginning of the 2r-interval. If the initial state is 
described by I,, terms, a (a), pulse will have no effect, while a (rr& pulse reverses the sign. 

(3) In other experiments, the refocussing sequence is bracketed by two 7r/2 pulses. Thus the effect of 
the sequence (a/2), - 7 - (x), - 7 - (n/2), may be written, using eqn. (48): 

~rrJk12r21krIlr 
$Ikx 

) L a(t+27+). (49) 
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This expression can be simplified to 

Thus the overall effect of the (7r/2), -T - (n), - T - (11/2), sequence is described by a bilinear rotation 
about the y-axis which causes the transformations: 

I ~i’CJu2T2Ik I( 
’ kr ’ f Ikr COS (du2T)+ 21,1, SiIl (dkc2t) (51) 

Ik, ~~~kc*T2~ky1Cy 
+lkx COS (xJ~/~T)- 21b,1ty Sin (nJkc2r). (52) 

These transformations are shown schematically in Fig. 7. Density operator components proportional 
to I,, remain invariant under this rotation. 

Equation (51) describes the creation of two-spin coherence from thermal equilibrium, whereas in 
eqn. (52) antiphase magnetization of spin G is generated from in-phase IkX magnetization. 

The effect of the analogous phase-shifted pulse sequence (n/2), - T - (n), - T - (n/2), is: 

a(t _) 1 nJkc!2T*IkxICx 
) a(ti”22,). (53) 

The transformations associated with such evolution operators, which are shown in Fig. 7, can be 
readily derived from the cyclic commutation relationships 

Clk19*lkMICC] = i*IkvIC{ (54) 

with 1, p, v = X, y, z and cyclic permutations, and < = x, y or z. 

COMPOSITE 

Ikt 

ROTATIONS 

f kr 

-I,, 

*WIr *fktby 

-*Iktllx -*IL& 

FIG. 7. Evolution of typical operator terms under the effect of product operators obtained in composite rotation 
sequences corresponding to effective Hamiltonians 2Idl, and 21kyIcy respectively. The sense of rotation is 

indicated for J k( > 0. 
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(4) Some pulse sequences use precession intervals without refocussing pulses, so that the chemical 
shift evolution must be considered as well. Thus a (x/2),-t - (n/2)_, sequence can be described by 

dt-1 
c ~Jk,T21,1, _ ~~k~lky 

bu(t+T+). 

(5) Other sequences do not possess inherent “sandwich symmetry” but may be modified by inserting 
“dummy” pulses that have no effect on the density operator to introduce the symmetry required for 
simplifying the expressions. Thus the sequence commonly employed for odd-quantum excitation, 
which may be written (11/2), - r - (n), - r - (x/2),,, can be expanded by inserting two dummy pulses: 

wM7d2L,(7@),- 7 - (n), - T - (7r/2),. In this modified form, the sandwich-sequence is easily recog- 
nized and the effect of the entire sequence is 

;zZkx -;cZS ~7cJU2t2Z~ZcX 

a(O_)- - +0(27+). (56) 

If the first pulse is applied to a system in thermal equilibrium, it generates pure -I,, magnetization 
which is not affected by the second term in the cascade. Note that the pulse sequence (x/2)&r/2)_, is 
equivalent to the sequence (n/2),(11/2),. 

(6) In heteronuclear systems, rc-pulses are often applied to both species Z and S to prevent refocussing 
of the heteronuclear coupling terms. Thus the sequence (x/2):- 7 - (n)!/ -T- (n/2); may be de- 
scribed: 

dt-1 
nCsnx c ~Ju2r2zkyzcy c 7CJj&h2z,s, 

f a(t+2r+). (57) 

Note the appearance of terms Zk,S,, with v # ZL, which occur because the n/2 pulses act only on the Z 
spins. The evolution of the density operator under such rotations is apparent from the commutation 
properties, eqn. (54), and may be represented diagrammatically in analogy to Fig. 6, by changing the 
axes of rotation to those labeled with 2Zk,,Z[, and 2Zk,Z& 

(7) Many experiments employ extensive phase cycling to select desirable coherence transfer 
pathways. For example, in the sequence commonly used for even-quantum excitation (n/2),+, - 7 - 

(n), - 7 - (n/2& it is possible to cancel undesired coherences by cycling the phase rp (see Section 14). 
The effect of such phase-shifted excitation sandwiches may be written concisely as 

fJ(O-) 
-1 @kz c nJu2~2zkyby +~~zkz 

47.). (58) 

If the initial density operator contains only populations and zero-quantum coherence, the first 
transformation has no effect. Thus the phase-shift boils down to a z-pulse applied after the actual 
excitation sequence. This form of analysis obviates the need to perform separate calculations for each 
member of a set of phase-shifted excitation sequences. 

(8) Some experiments employ flip angles j # z/2 to separate contributions from different spin 
systems, for example in the DEPT sequence, (57,5*) which is used for subspectral editing in carbon-13 
spectroscopy. To clarify the inner workings of such experiments, it is often useful to expand a single 
pulse into a sandwich. Thus 

u(t_) ~CZY u(t+) (59) 

is equivalent to 

-- ;c’k, fl~zkz +;xzky 
u(t_)- - - uO+) (60) 

where it becomes apparent that the pulse (/I), has a similar effect as two (n/2), rotations bracketing a 
(z!?), rotation (which is equivalent to a phase shift). 
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(9) In practice, rf pulses often deviate substantially from their nominal flip angles because of rf 
inhomogeneity, and offset effects cause undesirable complications. Composite pulses have been 
designed to achieve proper population inversion under non-ideal conditions.‘27~28~5v61) Pulse 
sequences of the form (z!?)&?),&& have proven to be very useful. The flip angle p has the nominal 
value 7c/2, whilst 8’ takes nominal values ranging from II to 4n/3 depending on the application!5g~60) 
To a good approximation the composite pulses accomplish the transformation 

z 

kr 

~B~o,x(B’)e,,(B)s,x _z 

* kz, (61) 

which implies that, when applied to arbitrary initial conditions, the composite pulse can be replaced 
formally by the sequence of operations: 

1 ‘pklkz R c I,, -c ‘pkzkz 

a(t_)LA A a@+). (62) 

This substitution differs from those given above in that it is approximate, with an accuracy dependent 
on the success of the composite pulse in compensating non-idealities. 

The expression eqn. (62) contains effective phase shifts (Pi which may be dependent on offset Gk and 
must in general be calculated by numerical methods. Complications arising from these undesirable 
rotations are best avoided in spin echo experiments by always employing an even number of 
refocussing pulse sandwiches, in which case the unwanted effective phase shifts cancel out.@i) 

7. MAGNETIC EQUIVALENCE 

Many calculations in high-resolution NMR can be simplified if symmetry-adapted wave functions 
are introduced to analyse systems with magnetic equivalence. In weakly-coupled systems, however, 
symmetrization often provides little advantage. It turns out that the analysis of pulse experiments is 
more straightforward if symmetrized wave functions are avoided. Thus an A,X system, for example, is 
treated as an AA’X system with JAX = JKx and J AA’ = 0. This approach has proven valuable in 
discussing multiple quantum NMRc6’) and polarization transfer experiments.(58) 

It is well known that in systems with magnetically equivalent nuclei k and !, the coupling 2nJk( Ik I( 
commutes with all propagators and observable operators, and may therefore be ignored. Symmetriza- 
tion may be of advantage if strong coupling occurs, if selective irradiation is applied (tickling, etc.) and 
if relaxation mechanisms are considered. When symmetrization is employed, expressions for group 
spins with Z 2 1 must be used such as treated in the next section. 

In some experiments, otherwise non-equivalent spins are made virtually equivalent for a finite time 
interval. This situation arises when magnetization initially prepared in a non-equilibrium state is 
subjected to a strong rf field of finite duration and is finally observed in the absence of irradiation, such 
as in the course of Hartmann-Hahn cross-polarization experiments in liquids,‘63) or when decoupling 
is applied for a limited time in the course of an experiment. (64) In these cases it is necessary to retain the 
full coupling Hamiltonian 2nJkeIkIG to express the evolution of product operators under the spin-spin 
couplings. The relevant transformations can be derived from the cyclic commutation relation 

[Ikb,~kx-~&l = @~ky~&-2~k,~ly) 

and from similar relations obtained by cyclic permutations of the indices x, y and z. 
Thus one obtains, for an irradiation interval of duration z: 

(63) 

27CJk~ZIkIc 

(zkx -z,x)’ (zkx -z&OS (27CJkLT) + (fzkyz& - 2zk,z,) sin (2AJkgr) 

and analogous transformations for cyclic permutations of x, y and z. Here, the difference of the in- 
phase magnetization of two nuclei is transferred into two antiphase magnetization terms. Non- 
equilibrium populations involving terms such as Z kr - ZCr, are converted into zero-quantum coherence 
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(21,,1, - 2JkYIc,) (see Section 9). This type of transformation is essential in polarization transfer 
experiments in the rotating frame.(63’ 

8. SPINS WITH S > l/2 

The evolution of the doublet of a spin St > l/2 under the scalar coupling to a nucleus with Ik = l/2 
is correctly described by eqns. (17)-(20). The It-spin multiplet however, which consists of (2St+ 1) 
lines of equal amplitude, evolves in a manner that depends on the quantum number SC of the coupling 
partner. 

For SC = 1, we decompose the Jk triplet into a central line and in-phase and antiphase 
magnetization of the outer lines: 

(0,&O) = J&%-Sk) 

(O,y, 0) = J/&e-S:,) 

(x, 0, x) = Ik,s:, 

(-x,0,x) = Ik,Slz 

(y, 0, y) = sky& 

(-y,o,y) = Iky&,. (654 

The central components are invariant to Jk(-coupling, and the outer lines evolve in analogy to 
doublets involving St = l/2 nuclei, but with twice the usual coupling constant: 

(x, 0, x) 
2~JkdkrSh (x,o ) 

b , x cos 27~ Jke7 + (-y, 0,~) Sin %LJkfT. Wb) 

These transformations are summed up in Fig. 8. 
If an arbitrary spin Ik > l/2 is coupled to a spin SI = 3/2 (which may be a group spin if AX, groups 

are treated in terms of symmetrized eigenfunctions), the I-spin quartet can be decomposed into 
in-phase and antiphase magnetization with the inner and outer transitions of the quartet: 

1 
(0, x, x, 0) = 2 Ikx 

[ 1 ;Er-S& 

9 
(0, --x,&O) = -IkxSC, 

[ 1 ;EcS:, 

1 1 
(X,&&X) = --Ikx -EL-@, 

[ 1 2 4 

(-x,0,0,x) = ;I&, fE&:, [ 1 
(664 

and corresponding y-components. 
The evolution under the scalar coupling can be described by rotations in two-dimensional 

subspaces analogous to those depicted in Fig. 8: 

(0, x,x, 0) 
2nJkdkzSh (o 

l ,x,x, 0)cos dkez + (0, -y,y, 0) sin 7tJkfl (66b) 

(x, o,o, x) 
ZnJkdk,Sn (x,o o ) 

, ,x cos3rrJ~r+(-y,O,O,y)sin3rrJkcz. (66c) 

Apart from the three-fold effective J-coupling constant in the last expression, these transformations 
are analogous to those of doublets involving SC = l/2 nuclei. The effects of chemical shifts and rf pulses 
on SC > l/2 nuclei are correctly described by eqns. (14), (15) and (22)-(41). 
JPNMRS 16:2-F 
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SCALAR COUPLING TO S= I 

-I,, s: 

Ikr% Iks% 

-I,$ Ir -lk,slz 

1kxSlt 
2 

hly% IkxS:r 1 ky% 

FIG. 8. Evolution of the outer magnetization components of a triplet of spin Ik coupled by JM > 0 to a quadrupolar 
spin SC = 1. 

In the following, we demonstrate that the evolution under the quadrupolar Hamiltonian in solids or 
in liquid crystals can be treated in an analogous manner. We restrict the discussion to S = 1 with an 
axially symmetric quadrupolar tensor (‘1 = 0) with the Hamiltonian:(42) 

JfQ= F (3s; -P) = OQ(S; -*s2, (674 

where we corresponds to one-half of the quadrupolar splitting. Since the Hamiltonian Se commutes 
with the weak coupling Hamiltonian of eqn. (12), quadrupolar evolution contributes another step in 
the “cascade” which describes free evolution in eqn. (13): 

a(t) 
COQd; 

p u(t+7). (67b) 

Using the procedure outlined by Slichter(42) and the cyclic commutation relationships 

[Sz, S,] = -t i{S,S, + S,S,} (68) 

one obtains the transformations shown in Fig. 9: 

SX 
WQZS; 

) &cos wQ7 + {s,& +s,s,} sin wQr (@a) 

QUADRUPOLAR COUPLING S = I 

FIG 9. Effect of the quadrupolar precession on the single-quantum magnetization components of an isolated spin 
s= 1. 
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In contrast to the product operators used in previous sections, products of the type S,S, which 
involve operators of the same spin are non-Hermitian and do not represent convenient basis operators 
B, to expand the density operator. The expressions in curly brackets (anticommutators), however, are 
Hermitian. The terms { S,S, + S,&) and {S,,S, + SJ,} represent antiphase single-quantum 
magnetization of the quadrupolar doublet along the x- and y-axes, respectively. 

The reader may easily verify that the sequence (n/2), -Z - (n), -7 - (n/2), generates a state of pure 
double-quantum coherence {SJ, + S,S,}, provided t = n/40,. W) The n-pulse eliminates the effect of 
chemical shift without modifying the precession under the quadrupolar coupling. 

On the other hand, the sequence (n/2), -Z - (x), - r - (n/2), -T’ - (R), - 7’ leads to a state 

o(2r,27’) = S,[cos ~~27 cos oQ22’+ sip ~~22 sin ~~227 

+ {S,S,+S,S,}[sinwQ22cosoQ2t’-coswQ2rsino~2r’] (70) 

which contains only in-phase and antiphase single-quantum magnetization. For T’ = 7, at the 
quadrupolar echo, the full S, magnetization is refocussed irrespective of the magnitude of the 
quadrupolar coupling. The same quadrupolar echo sequence may be expanded with dummy pulses in 
order to obtain composite rotation sandwiches: 

[(~/2),-7-(7C)2-7-(~/2),1(~/2),[(7C/2)-~-7’-((n),-7’-(~/2)-,1(~/2),. 

The two sandwiches represent pure quadrupolar evolution with the Hamiltonian w&, and one 
immediately finds for each of the two sandwiches 

SZ 
0,2zS; 

, S,coswQ2r+ (S,S,+S,S,)sinoQ2r. (71) 

The evolution of the system in the course of the complete sequence is 

0~2TS,z WQ2TS,2 

a(t)- - - - u(t+2~+2~‘). (72) 

The phase shift operator (x/2)$ does not affect the first but inverts the second term in eqn. (71), 
leading effectively to a time reversal and, after the full sequence, to the complete restoration of the 
initial magnetization at z’ = T. 

9. MULTIPLE QUANTUM COHERENCE 

Product operators with q, transverse single spin operators IkV (v = x,y) always consist of a 
superposition of multiple quantum coherences of orders p = q, - 2n (n = 0,1,2,. . .). This can be readily 
demonstrated by using raising and lowering operators: 

r,,=;(I:+I;) (73) 

I,, = $I: -Ii). (74) 

Thus two-spin product operators may be written: 

2IkJ& = (75) 

2&&y =-$+It-I;Ir-I;I:+I;IT) (76) 

2I,,I, = &I; -I:& +&I; -I;&) (77) 



182 0. W. WRENSEN et al. 

21,1,x 

Clearly, all four product operators 
opposite spin-flips respectively). 

The linear combinations 

= ;(*;I; +r:1, -1,I: -1;l;). (78) 

contain both double and zero quantum terms (concerted and 

and 

_:(2Z,1,--2Zk,Z,) = ;(Z;Z; +Z;Z;) = {2QT), (79) 

;(2ZkrZ,r+2ZkyZ&) = ;(Z;Z; -Z;Z;) = {2QT}, (go) 

represent pure double quantum coherence and span a vector space in which double quantum coherence 
precesses under the influence of the sum of the chemical shifts: 

F'Q'Vx 
@klkz +aL~lz)z 12QTj 

x cos (Rk + F&)T + {2QT}, sin (a, +&)r. (81) 

Similarly, pure zero quantum coherence is given by 

i(2ZkXZ,,+2ZkYZf,,) = :(Z;Z; +Z;Zt) = {zQT}x (82) 

i(2ZpYZ&-2ZkXZ&) = &(Z;Z;-Z;Z;) = {ZQT},. (83) 

The precession is determined by the difference of the chemical shifts: 

iZQT)x 
(S2k1kr+nfrh)r iZQTl 

x cos (ok -!&)t + {ZQT}, sin (&. -&)r. (84) 

Pure triple quantum coherence is easily described in terms of shift operators, which can be converted 
into Cartesian spin operators if necessary 

{3QT}x =;(&+I;I; +,;1;1,)~~(41k,11,1,, -41k,~~,~,-4zk,~Cxlmy-4~ky~C~~rnx) (85) 

(3QT}, = ;(I:IiI; -I;Icl,)=~(41k,I~,I,+41k,Il,1,,+4~k~~~~z~~-4k~~~~z~~). (86) 

The chemical shift evolution is: 

{3QTJx 
@klkz +&If, +%lm& t3QTj 

.COS(nk+n,+n,)t+{3QT},Sin(IZk+ne+n,)z. 

(87) 

Arbitrary combination lines can be readily constructed in terms of shift operators. Thus a 4-spin-2- 
quantum coherence involving spins k, 8, m and n with the fourth spin undergoing an opposite spin flip 
(Am, = - 1) is expressed by 

{Cspin-2QT}, = ~(Z~Z~Z~Z; +Z,Z;Z;ZJ) 

{4-spin-2QT}, = ~(1~1~1~1; -Z;l~l;I~). 

(88) 

(89) 
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(90) 
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The precession under chemical shifts obeys the general rule 

{q-spin-pQT}, CnkIkrT+ {q-spin-pQT),cos~,@+ {q-spin-pQT},sin&T, 

where 

p = AM = CAmk, 4 = T(Amkl, &-f = CAmknk, 
k k 

and Am, = &- 1 depending on the change in quantum number of spin k.@’ 
The evolution of multiple quantum coherence is not affected by couplings between nuclei actively 

involved in the transition. For example, two-spin coherence is invariant to the transformation 

This is consistent with the commutation expression 

[2IkiICv, 2Ik,b(l = 0 (92) 

for I = p and v = 5 or I # p and v # 5. On the other hand, multiple quantum coherence evolves 
under couplings to “passive” spins, leading to multiplets in the multiple quantum spectrum. 

For q-spin-p-quantum combination lines, the effective coupling constant with a passive nucleus m is 
defined in analogy to the effective chemical shift(66) 

Jer = 1 A&J,,,,. (93) 
k 

The evolution under the effective coupling is described by the transformation 

1 nJ,,T2I,,I,, 

{q-spin-pQ% ’ l {q-spin-pQT}, cos 11J,u + 2I,,(q-spin-pQT}, sin nJ,,g. (94) 

The implications of rf phase-shifts or z-pulses are conveniently expressed in terms of shift operators : 

e-h&I,+ e+WLz = exp (_icp)~; (95) 

e-&%I; e+WkZ = exp (+ @)I,. (96) 

A p-quantum coherence term experiences a p-fold phase-shift: 

(q-spin-pQT}, ’ IkZ t {q-spin-pQT}, cos p(p + (q-spin-pQT}, sin p(p (97) 

Raising and lowering operators generally yield simpler expressions for higher-quantum coherences. 

10. OBSERVABLES 

As stated in eqn. (3) the observable transverse magnetization components are derived from the 
density operator a(t) by forming the traces M,(t) = Nryh Tr {F,a(t)} and M,(t) = &“/lryh Tr {F,a(t)}. In 
fact, if we focus attention on systems with I = l/2 spins, exclusively one-spin operators of the type I,, 
and Iky give rise to observable magnetization. Products like 2lkxI&, representing antiphase magnetiza- 
tion, are not observable in a strict sense. In the course of the detection period, however, such antiphase 
product operators may evolve into observable in-phase magnetization: 

21kx1,, 
nJkcT2IkzIez 

+ [2Ik,Ic,COS(nJk6~)+IkySin(nJkCT)]. (98) 

After Fourier transformation, the observable term I,,sin (nJklT) leads to an antiphase doublet 
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centered at the chemical shift 4. Such a doublet is observable only when the two lines are resolved, 
since the two antiphase components cancel if the line width exceeds the magnitude of the coupling. All 
product operators which in the course of the detection period evolve into observable magnetization 
are henceforth referred to as “observables”. In particular, all product operators containing a single 
transverse component I,_ or Zky and an arbitrary number of longitudinal components, such as 21,,IpZ, 
4~kxIlzI,, . . > are observable, provided all couplings J,& Jk,,, . . . are resolved. However, if one of the 
couplings is insufficiently resolved, observation will be strongly inhibited. 

The relative amplitudes and phases of the spectral lines can be derived immediately from the form of 
the product operators. Consider a system of three weakly coupled spins, k, 8 and m with I = l/2. 
Figure 4 illustrates the one-dimensional spectra of spin k obtained after Fourier transformation of a 
free induction signal induced by a number of typical product operators. For JkC = Jkm, the multiplet of 
nucleus k collapses to a triplet. Product operators are therefore easily visualized in terms of the spectra 
to which they give rise. 

In systems with strong coupling, additional product operators corresponding to combination lines, 
like JkX(J&J,X+J@J,) also become observable. (See the expressions for zero quantum transitions, 
eqns. (82) and (83).) By contrast, multiple quantum coherence can never lead to observable 
magnetization unless further pulses are applied. 

For heteronuclear IS systems with S > l/2 nuclei, the situation is slightly more complicated. For 
S = 1, the product OperatOrS Ikx,IkxSfz and I&$ represent triplets with amplitudes (1, 1, l), (- l,O, 1) 
and (l,O, 1) respectively. In addition, products containing even powers of transverse ScX and SJ~ 
operators lead to observable single-quantum Jk-magnetization. Thus Jk&$ and Jk&r both lead to 
(l/2,1, l/2) triplets. For S = 312, the product operators JkXr J&&, I&& and Jk$& represent quartets 
with amplitudes (1, 1, 1, l), (- 3/2, - i/2,1/2,3/2), (9/4, l/4, l/4,9/4) and (- 27/8, - l/8,1/8,27/8) 

respectively. In addition, the products JkXSsX and J&r both lead to quartets with amplitudes 

(3l4,7l4,7l4,3/4). 

11. SEMISELECTIVE AND SELECTIVE PULSES 

Semiselectiue pulses with (27rJl < lyB, 1 < lAfi(, i.e. pulses that affect all multiplet components of one 
given spin k uniformly, are simply represented by the operator exp {iplkv} (i.e. by restricting the 
summation in eqn. (22) to a single spin). When applicable, the effect of the offset may be expressed in 
terms of tilted rf fields [eqns. (39)-(41)]. 

Selective pulses acting on individual multiplet lines, with 1~Bi 1 < (2nJ( < lAQ(, can be described by 
linear combinations of product operators. In a coupled two-spin system, one of the doublet com- 
ponents of spin k can be constructed by a linear combination of the operators Ikx and 2JkXJ&, as may 
be appreciated by inspection of Fig. 4. Thus a selective pulse may be represented by the transformation 

a@+) = exp{ -i~f(zk,f2zkx~~~)}~(t-)exp{+~~~(~kx~~~kx~Cr)) (99) 

or in shorthand 

This transformation can be expanded as a sequence of rotations (see Section 6): 

-;Iky ;Ikz 
P 

+-2Ikzl&z 
2 

;Iky 
a(t_)----+---+--------* - o(t+). (101) 

It follows that a selective pulse can be represented formally (or even generated experimentally) by a 
sequence of semiselective pulses in combination with a free precession period.‘67) Equation (101) can 
be evaluated by the rules derived in Section 5. 

Expressions analogous to eqns. (99)-(101) can easily be constructed for selective pulses in arbi- 
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trarily complex spin systems. In a three spin system (k, J, m), the appropriate linear combinations of 
operators may be readily derived from the central part of Fig. 4. Thus a selective pulse affecting the 
k-spin transition corresponding to Ill = I, = + l/2 is described by the transformation 

When this expression is expanded in analogy to eqn. (lOl), the evolution under terms containing three 
operators must be computed, for example: 

ZkX 8h41kzIhInu 
> Ikx cos (b/4) +  41kyICzImz sin (8/4) (103) 

which represents a trivial extension of eqns. (17)-(20). 
It is thus not necessary to take recourse to single transition operators although these provide an 

alternative approach to describe selective pulses.‘47,4s) 
In the following sections, a number of selected examples will be discussed to illustrate the 

application of the operator formalism to different pulse experiments. Heteronuclear applications 
(INEPT and DEPT) have been treated elsewhere.(58) 

12. TWO-DIMENSIONAL CORRELATION SPECTROSCOPY 

Consider the basic two-dimensional (2D) correlation experiment shown in Fig. lOa, which has 
found widespread use for the identification of coupling partners in networks of coupled spins!4*6,23,24’ 
For a simple two-spin system, the density operator at various stages can be described as follows (the 
lower indices of cri refer to the points of time in Fig. 10): 

01 = -Ik,-IQ, 

I nkt,Ikr+RctlI~,+nJkctl2zk,Ic, 

rr2 = [ -ZI,,cosQ,t, +Z,,sinR,t, 

-Z&cosn,tl+ZJXsinfi[tl]cosnZk&l 

•l- [2Zk,Z&cosC& +2ZkrZ&sin&ti 

+2Zk,Z&cos@$r +2ZkzZCy sin&ti] sinnZk$i 

(105) 

(106) 

(107) 

In the last step only observable terms have been retained. The first term will continue to precess at 
C!k flcJu in the detection period. Hence, after ZDFT, it will lead to a 2D multiplet pattern on the 
diagonal at w1 = w1 = Cl, with in-phase doublet structure (cosine-dependence on Zk[) in both 
directions. Similarly, the second term leads to an in-phase diagonal multiplet at w1 = o2 = RI. The 
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a 

b 

C 

d 

e 

FIG. 10. Pulse sequences discussed in Sections 12-16. The pulse rotation angles (n/2 or n) are distinguished by the 
pulse widths, and the rfphases are indicated for the basic versions of the experiments. The numbers refer to the state 
of the system (density operator) as referred to in the text. (a) two-dimensional (2D) correlation spectroscopy, (b) 
2D relayed magnetization transfer spectroscopy, (c) basic sequence for multiple quantum NMR, (d) 2D correlation 
spectroscopy with multiple quantum filter, and (e) 2D exchange spectroscopy. All sequences are shown for 

homonuclear applications but can be extended for heteronuclear cases. 

third term, representing antiphase k-magnetization, will resume precession at Rk+nJke in the 
detection period and therefore leads to a cross-peak multiplet at w1 = RI, o2 = Ok with antiphase 
doublet structure (sine-dependence on Jke) in both dimensions. The last term represents a cross-peak 
multiplet at w1 = Qk and o2 = Qc. Thus, eqn. (107) provides a concise and complete description of the 
basic 2D correlation experiment. The calculation can be simplified by treating the first two pulses and 
the t, period as a composite rotation [see Section 6 and eqn. (55)]. Extensions to networks of coupled 

spins of arbitrary complexity are easily carried out. 

13. RELAYED MAGNETIZATION TRANSFER 

Recently, several experiments have been proposed which are based on relayed transfer of single 
quantum coherence between two nuclei k and m that are not coupled together but possess a common 
coupling partner e. Such experiments are used to assist in the identification of homonuclear coupling 
networks(33) and to identify neighbouring carbon-13 nuclei.‘34m36’ 

One of the pulse sequences appropriate for homonuclear relayed transfer is shown in Fig. lob, 
where t can be either a fixed or a variable interval. Consider a three-spin system (k, e, m) with Jkc, = 0, 
where we shall focus attention on magnetization which starts precession at R, in ti and ends up 
precessing at 51, in t,. After the second (7c/2), pulse, the relevant terms are described by eqn. (107). 
Only the fourth term represents transverse antiphase k magnetization and can be subject to relayed 
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transfer from k to m via !: 

c$‘~) = -21k,11,sin(nkt,)sin(~Jkltl). (108) 

In the subsequent 2~ interval in Fig. lob, we need only consider the effect of scalar couplings, since 
chemical shifts are refocussed. To qualify for a transfer of coherence to the third m nucleus, the 
transverse /-magnetization in CT~ must evolve such as to be in-phase with respect to Jk( and antiphase 
with respect to J?,. Only one term fulfills those conditions at the end of the 2r-interval: 

e~k~L’ = 21tylmrsin (&t,)sin (rcJklt,)sin (rrJkf2r)sin (xJem2r). (109) 

By the third pulse, this term is converted into transverse m-magnetization: 

o~-*~-“‘) = -21,,1,, sin (&t,)sin (nJktt,)sin (rrJk,2r)sin (7cJ1,2t). (110) 

This term describes a cross-peak multiplet at w1 = R, and o2 = R, with antiphase doublet structure 
in both dimensions, and with an amplitude determined by the transfer function f(r)‘k*L+m’ = 
sin nJkp2r sin 7cJ/,2r. The presence of such a cross-peak in a 2D relayed spectrum provides conclusive 
evidence that the nuclei k and m belong to the same network of coupled spins. 

14. MULTIPLE QUANTUM SPECTROSCOPY 

To illustrate the utility of operator techniques for the discussion of multiple quantum experiments, 
consider the pulse sequence shown in Fig. lOc, which has proven convenient for investigating 
homonuclear systems. To excite even-quantum coherences, the phases cp and cp’ must be equal, 
whereas for odd-quantum experiments cp’ = p + 7c/2. For the suppression of undesired coherence p’ # 
p, cp is cycled through k(2n/2p) (k = 0, 1,. . . (2p - 1)) while the signals are alternatively added and 
subtracted.(‘3) The effect of the excitation sandwich with a phase cp = cp’ is described by eqn. (58). 
When applied to a system initially without coherence the complete experiment may be represented by 
the sequence 

1 rt Jk.2r2JkyJ/y (PCJkZ =@“ti ;,K xr2 

o(O) +A------) ~-c(t,,t,) (111) 

with the unperturbed Hamiltonian of eqn. (12). 
At the beginning of the evolution period, assuming cp = 0 (i.e. all excitation pulses along the x-axis) 

we obtain, according to eqn. (51), the following state for a two-spin system: 

Ui(‘p = 0) = (Ikz+lel)COS?LJk~22+(21kxldy+21kyI~x)SinKJk12T. (112) 

The second term represents pure double quantum coherence [eqn. (go)]. A phase shift cp = k(2n/4) 

[second term in the cascade of eqn. (11 l)] leaves the leading longitudinal terms of eqn. (112) invariant, 
while the double quantum coherence is invariant for k = 0 and 2, and reversed in sign for k = 1 and 3 
[eqn. (97)]. The evolution of the double quantum coherence, which is unaffected by the scalar coupling 
between the two nuclei, is described in analogy to eqn. (81): 

0~2 = [(21k,I,,+2lk,l~,)cos(nk+n,)r, -(21k,1e,-2lkyl~~)sin(nk+n,)t,]sinKJk(22. 

(113) 

A mixing pulse with rotation angle fi = n/2 (see Fig. 1Oc) converts only the cosine-modulated term 
in eqn. (113) into observable magnetization: 

03 Ohs = (2lkxllr+2lklllr)COS(Rk+n,)t, SiIIKJk,‘2T. (114) 

The detected signals consist of antiphase multiplets at w2 = Dk and RL. 
An observe pulse with flip angle j # n/2 also converts part of the sine-modulated term in eqn. (113) 

into observable magnetization. This makes it possible to identify the sign of double quantum 
precession. (31) In extended coupling networks, however, this behaviour is restricted to situations 
where the multiple quantum coherence and the observable magnetization contain a common I,, or I,, 
operator.@‘) 
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In linear three-spin systems (k, t, m) with J km = 0, the preparation sandwich may also produce terms 
of the form 

Q, = -4Z/,ZkYZ,1, sin 2AJuZ sin xJe,2z. (115) 

This term consists ofzero and double quantum coherence of spins k and m in antiphase with respect to 
the “central” spin c!. This phenomenon can be used to prove that k and m belong to the same coupling 
network.@‘) It is also possible to generate double quantum coherence involving two magnetically 
equivalent nuclei Zk and I, via a coupling partner II, a phenomenon that can be used to identify the 
existence of magnetic equivalence in coupling networks. It is clear that antiphase magnetization terms 
such as in eqn. (115) can only become apparent in the spectrum when the couplings Jk,, J,, . . . are 
resolved. This requirement is consistent with the coherence transfer selection rules discussed by 
Braunschweiler et aLc6’) 

15. MULTIPLE QUANTUM FILTERS 

Recently, several experiments have been proposed which exploit coherence transfer via multiple 
quantum coherence to simplify single quantum spectra.(29.30,68) By way of example, consider the 
application of the product operator formalism to double quantum filters for simplifying 2D correla- 
tion spectra. (68) In the pulse sequence in Fig. lOd, the phase cp is cycled such as to retain only pure 
double quantum coherence between the second and third n/2 pulses. The density operator of a two- 
spin system at the end of the evolution period has been given already in eqn. (106). After the second 
pulse (with the same rf phase cp = x) we obtain : 

Unlike eqn. (107), which describes only observable terms, this expression gives a complete description 
of the density operator, including longitudinal terms and two-spin coherence. The latter can be 
expressed as linear combinations of pure double and zero quantum coherences according to eqns. (80) 
and (83): 

63 =[-~~COs~ktl+z~sln~kt~-~~ICOs~,t,+~,Sin~,t,]COSRJ~~t, 

+ {~~(2~k~~Cy+~~ky~lx)-(2~ky~lx-2~kr~Cy)1COSnktl +&[(2zkxl, 

+2zk,zcx)+(2zk,~/,-2~kxzCy)]COSnlt~ +2Zk,ZlYsinnkt1 

+ 2ZkyZ& sin a, tl} sin nJutl. 

(117) 

In the course of the phase-cycle, all longitudinal, zero quantum and antiphase single quantum terms 
are cancelled, leaving a pure double quantum state: 

a?jQT = {)(2zk,z~~++zk~z,)cos~~t, +)(2zk,z~,+2zk,z,)cosRct~} sinnJkftl. (118) 

The third pulse in Fig. 10d (with constant phase x) generates single quantum magnetization: 

Cibs = {~(2zkxzLr+2zklz~x)COS~ktl +)(21k,z~~+21k,z~~)COS~~t,)sinxJket,. (119) 

This expression may be compared with eqn. (107), which describes the observable part of a two-spin 
system at the beginning of the detection period in conventional 2D correlation spectroscopy. In 
contrast to eqn. (107), the operators giving rise to diagonal peaks [first and fourth terms in eqn. (119)] 
appear with antiphase doublet structure in both dimensions of the two-dimensional frequency 
domain. In spectra of large molecules such as biopolymers, where the linewidth may be comparable to 
the J-coupling, the diagonal signals will therefore be attenuated by partial cancellation of antiphase 
multiplets to the same extent as cross-peaks. In addition, diagonal signals stemming from singlets are 
removed, hence the dominant diagonal ridge of conventional correlation spectra is largely eliminated 
by the double quantum filter. 
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The second and third terms in eqn. (119) give rise to cross-peaks and hence carry information about 
coupling partners. These peaks appear with half the amplitude of those obtained in conventional 
correlation spectra. 

16. ZERO-QUANTUM INTERFERENCE IN 2D EXCHANGE SPECTROSCOPY 

Slow dynamic processes such as chemical exchange, transient Overhauser effects and spin-diffusion 
can be studied by two-dimensional exchange spectroscopy. tz2) The appropriate pulse sequence, shown 
in Fig. lOe, is essentially the same as Fig. lOd, except for the extended mixing interval z, and the phase 
cycle which selects the longitudinal polarization evolving in t,,,, while coherences of order 
p = 1,2,3,... are suppressed.‘6g) Since zero-quantum coherence has the same response to rf phase- 
shifts as longitudinal polarization, it cannot be separated by phase-cycling. 

Thus the relevant part of the density operator at the beginning of the mixing interval 7,,, comprises 
three terms of eqn. (117): 

cr:O”git”dinal+zQT = [ -I~tCOSn~tl -It, cosn,t,] cos d/&t, 

+ (I,Z, - I~xl~y)[cos C&t1 -cost&J,] sin 7rJuti. (120) 

The zero-quantum term evolves according to eqn. (84), while the longitudinal terms mix under the 
combined effects of exchange and relaxation. After the final pulse in Fig. lOe, the observable 
magnetization is : 

+ (IhJcx_J~cxlc~)cos(~k_RC)7,(cosRLtl_cosSZktl)sinrrJkct, (121) 

for a symmetrical two-site exchange case, the mixing coefficientst38*6g*‘01 are: 

a~ = a(/ =+exp(-R,r,)[l+exp(-2kr,)] (122) 

ati = alk = +$exp(-Rir,)[l-exp(-2k7,)] (123) 

with the spin-lattice relaxation rate R, and the exchange rate k. 
One immediately recognizes diagonal peaks proportional to akk and act, exchange cross-peaks 

proportional to o/k and al,t (all of which are in-phase with respect to Ju), as well as antiphase 
diagonal- and cross-peaks that stem from zero-quantum coherence (so-called J-cross peaks in 
exchange spectrat6g)). 

A pulse with /I # z/2 at the end of the evolution period generates in addition terms of the type 
2Ik,I& (longitudinal two-spin order). The decay of such terms (dipolar relaxation in solids) may 
be monitored by an observation pulse with /3 # n/2. This leads to a 2D analogue of the Jeener- 
Broekaert experiment.“‘) 

17. SIGNAL INTENSITIES FOR NON-EQUILIBRIUM SYSTEMS 

It is known that the signal intensities in pulse Fourier spectroscopy show surprising dependences on 
the pulse rotation angle when systems with non-equilibrium populations (non-equilibrium states of 
the first kind) are investigated. (5) Such states occur frequently in CIDNP and relaxation measure- 
ments. The rotation angle dependence of the signal intensities can be computed very easily with the 
product operator formalism. 

Consider a weakly-coupled system of N spins * with non-equilibrium populations. The density 
matrix contains 2N diagonal elements, and may be expanded in the orthogonal set of 2N operators {B,} 
consisting of a unity operator $E, N operators Ik, N-l operators 21bIlr.. . and one N-spin operator. 
The coefficients of these operators can be readily expressed in terms of populations, for example in a 
two-spin system: 

(124) 
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In a three-spin system, the coefficients are: 

Each of the operators has a characteristic transformation behaviour under the action of an rf pulse 
with rotation angle j?. In general, various orders of multiple quantum coherence are generated. In a 
single-pulse experiment, only product operators with a single transverse component need to be 

considered : 

PCIkY 
I,, k I,, sin /3 (126) 

Thus contributions from in-phase magnetization [eqn. (126)], which lead to multiplet lines of equal 
amplitude and sign, are proportional to sin/3 and reach their maximum at /I = 7r/2. However, 
antiphase multiplet magnetization, stemming from products of q operators, is proportional to 
sin/Ices /I q-l and vanishes for B = 742 [eqns. (127), (12811. For /3 = 742, only in-phase magnetization 
survives and undistorted multiplets are obtained irrespective of the initial population state. On the 
other hand, if small rotation angles are used (cos j? w l), all product operators produce observable 
transverse magnetization. In this case the Fourier transform of the free induction signal is equivalent 
to the continuous-wave spectral response.@) 

18. CONCLUSIONS 

The examples treated in the previous sections demonstrate the simplicity and usefulness of the 
product operator formalism discussed in this paper. For most practical situations, only a few rules, 
which have been summed up in Figs. 6-8, need to be retained. It is our experience that newcomers to 
the field of pulsed NMR, even with little understanding of quantum mechanics, very quickly get 
sufficiently familiar with this formalism to be able to analyse pulse experiments of arbitrary 
complexity. Many research workers have used operator approaches before; we have attempted here to 
present a treatment particularly appropriate for modern pulse experiments. 
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